2022

Alam, M. Sohaib, et al. Quantum Computing Hardware for HEP Algorithms and Sensing. arXiv, 29 Apr. 2022, http://arxiv.org/abs/2204.08605.

Chitta, Sai Pavan, et al. Computer-Aided Quantization and Numerical Analysis of Superconducting Circuits. arXiv, 2 July 2022, https://doi.org/10.48550/arXiv.2206.08320.

Joshi, Kamal R., et al. Quasiparticle Spectroscopy, Transport, and Magnetic Properties of Nb Films Used in Superconducting Transmon Qubits. arXiv, 23 July 2022, http://arxiv.org/abs/2207.11616.

Oh, Jin-Su, et al. Multi-Modal Electron Microscopy Study on Decoherence Sources and Their Stability in Nb Based Superconducting Qubit. arXiv, 12 Apr. 2022, http://arxiv.org/abs/2204.06041.

Prozorov, Ruslan, et al. Niobium in Clean Limit: An Intrinsic Type-I Superconductor. arXiv, 24 July 2022, http://arxiv.org/abs/2207.11829.

Sauls, J. A. “Theory of Disordered Superconductors with Applications to Nonlinear Current Response.” Progress of Theoretical and Experimental Physics, vol. 2022, no. 3, Mar. 2022, p. 033I03, https://doi.org/10.1093/ptep/ptac034.

Ueki, Hikaru, et al. The Frequency Shift and Q of Disordered Superconducting RF Cavities. arXiv, 29 July 2022, http://arxiv.org/abs/2207.14236.

Zarea, Mehdi, et al. Effects of Anisotropy and Disorder on the Superconducting Properties of Niobium. arXiv, 18 Jan. 2022, http://arxiv.org/abs/2201.07403.

Zhai, Gan, et al. Contactless Excitation of Acoustic Resonance in Insulating Wafers. arXiv, 21 Sept. 2022, http://arxiv.org/abs/2207.11913.

2021

Avers, K. E., et al. “Electron-Beam Floating-Zone Refined UCoGe.” Physical Review Materials, vol. 5, no. 5, May 2021, p. 054803, http://doi.org/10.1103/PhysRevMaterials.5.054803.

Avers, K. E., et al. “Fingerprinting Triangular-Lattice Antiferromagnet by Excitation Gaps.” Physical Review B, vol. 103, no. 18, May 2021, p. L180406, http://doi.org/10.1103/PhysRevB.103.L180406.

Lee, Jaeyel, et al. Discovery of Nb Hydride Precipitates in Superconducting Qubits. arXiv, 23 Aug. 2021, http://arxiv.org/abs/2108.10385.

2020

Avers, K. E., et al. “Broken Time-Reversal Symmetry in the Topological Superconductor UPt3.” Nature Physics, Mar. 2020, http://doi.org/10.1038/s41567-020-0822-z.

Checchin, Mattia, and Anna Grassellino. “Vortex Dynamics and Dissipation Under High-Amplitude Microwave Drive.” ArXiv:2004.05083 [Cond-Mat, Physics:Physics], Apr. 2020, http://arxiv.org/abs/2004.05083.

Lee, Jaeyel, et al. “Grain-Boundary Structure and Segregation in Nb3Sn Coatings on Nb for High-Performance Superconducting Radiofrequency Cavity Applications.” Acta Materialia, vol. 188, Apr. 2020, pp. 155–65, http://doi.org/10.1016/j.actamat.2020.01.055.

Ngampruetikorn, Vudtiwat, and J. A. Sauls. “Anomalous Thermal Hall Effects in Chiral Superconductors.” Phisical Review B, In Review 2020, https://arxiv.org/abs/1911.06299.

Ngampruetikorn, Vudtiwat, and J. A. Sauls. “Impurity-Induced Anomalous Thermal Hall Effect in Chiral Superconductors.” Physical Review Letters, vol. 124, no. 15, Apr. 2020, p. 157002, http://doi.org/10.1103/PhysRevLett.124.157002.

Regan, Robert C., et al. “Vortex Phase Diagram of Rotating Superfluid 3He−B.” Physical Review B, vol. 101, no. 2, Jan. 2020, p. 024517, http://doi.org/10.1103/PhysRevB.101.024517.

Sauls, J. A., et al. “Superfluidity in Disordered Neutron Stars Crusts.” Physical Review Letters, Under Review 2020, http://arxiv.org/abs/2001.09959.

2019

Bafia, Daniel, et al. Investigation of Frequency Behavior Near Tc of Niobium Superconducting Radio-Frequency Cavities. JACOW Publishing, Geneva, Switzerland, 2019, pp. 112–17, http://doi.org/10.18429/JACoW-SRF2019-MOP031.

Lee, Jaeyel, et al. “Atomic Scale Analysis of Nb3Sn on Nb Prepared by a Vapor-Diffusion Process for Superconducting Radiofrequency Cavity Applications.” Superconductor Science and Technology, vol. 32, no. 2, Feb. 2019, p. 024001, http://doi.org/10.1088/1361-6668/aaf268.

Ngampruetikorn, Vudtiwat, and J. A. Sauls. “The Effect of Inhomogeneous Surface Disorder on the Superheating Field of Superconducting RF Cavities.” Physical Review Research, vol. 1, no. 1, Aug. 2019, p. 012015, http://doi.org/10.1103/PhysRevResearch.1.012015.

Uematsu, Hiroki, et al. “Chiral Higgs Mode in Nematic Superconductors.” Physical Review Letters, vol. 123, no. 23, Dec. 2019, p. 237001, http://doi.org/10.1103/PhysRevLett.123.237001.

You, Xinyuan, et al. “Circuit Quantization in the Presence of Time-Dependent External Flux.” Physical Review B, vol. 99, no. 17, May 2019, p. 174512, http://doi.org/10.1103/PhysRevB.99.174512.

2018

Avers, K. E., et al. “Vortex Lattices and Broken Time Reversal Symmetry in the Topological Superconductor UPt3.” ArXiv:1812.05690 [Cond-Mat], Dec. 2018, http://arxiv.org/abs/1812.05690.

Checchin, M., et al. “Frequency Dependence of Trapped Flux Sensitivity in SRF Cavities.” Applied Physics Letters, vol. 112, no. 7, Feb. 2018, p. 072601, http://doi.org/10.1063/1.5016525.

Grassellino, A., et al. “Accelerating Fields up to 49 MV/m in TESLA-Shape Superconducting RF Niobium Cavities via 75C Vacuum Bake.” ArXiv:1806.09824 [Physics], June 2018, http://arxiv.org/abs/1806.09824.

Halperin, W. P., et al. “Superfluid helium-3 in confined quarters.” Physics Today, vol. 71, no. 11, 2018, pp. 30–36, http://doi.org/10.1063/PT.3.4067.

Krzystyniak, M., et al. “Nitrogen Doping and the Performance of Superconducting Radio-Frequency Niobium Cavities: Insights from Neutron Diffraction and Neutron Compton Scattering.” Journal of Physics: Conference Series, vol. 1055, July 2018, p. 012006, http://doi.org/10.1088/1742-6596/1055/1/012006.

Martinello, M., et al. “Field-Enhanced Superconductivity in High-Frequency Niobium Accelerating Cavities.” Physical Review Letters, vol. 121, no. 22, Nov. 2018, p. 224801, http://doi.org/10.1103/PhysRevLett.121.224801.

Mizushima, Takeshi, and J. A. Sauls. “Bosonic Surface States and Acoustic Spectroscopy of Confined Superfluid 3He-B.” ArXiv:1801.02277 [Cond-Mat], Jan. 2018, http://arxiv.org/abs/1801.02277.

Posen, S., et al. “The Effect of Mechanical Cold Work on the Magnetic Flux Expulsion of Niobium.” ArXiv:1804.07207 [Physics], Apr. 2018, http://arxiv.org/abs/1804.07207.

Romanenko, A., et al. “Three-Dimensional Superconducting Resonators at T < 20 MK with the Photon Lifetime up to τ =2 Seconds.” ArXiv:1810.03703 [Cond-Mat, Physics:Physics, Physics:Quant-Ph], Oct. 2018, http://arxiv.org/abs/1810.03703.

Sauls, J. A. “Andreev Bound States and Their Signatures.” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 376, no. 2125, Aug. 2018, p. 20180140, http://doi.org/10.1098/rsta.2018.0140.

Trenikhina, Y., et al. “Performance-Defining Properties of Nb3Sn Coating in SRF Cavities.” Superconductor Science and Technology, vol. 31, no. 1, Nov. 2018, p. 015004, http://doi.org/10.1088/1361-6668/aa9694.

Wiman, J. J., and J. A. Sauls. “Spontaneous Helical Order of a Chiral p-Wave Superfluid Confined in Nanoscale Channels.” Physical Review Letters, vol. 121, no. 4, July 2018, p. 045301, http://doi.org/10.1103/PhysRevLett.121.045301.

Wu, Hao, and J. A. Sauls. “Edge States and Broken Symmetry Phases of Laterally Confined 3He Films.” ArXiv:1805.00936 [Cond-Mat], May 2018, http://arxiv.org/abs/1805.00936.

2017

Checchin, M., et al. “Electron Mean Free Path Dependence of the Vortex Surface Impedance.” Superconductor Science and Technology, vol. 30, no. 3, Jan. 2017, http://doi.org/10.1088/1361-6668/aa5297.

Grassellino, A., et al. “Unprecedented Quality Factors at Accelerating Gradients up to 45 MVm-1in Niobium Superconducting Resonators via Low Temperature Nitrogen Infusion.” Superconductor Science and Technology, vol. 30, no. 9, Aug. 2017, p. 094004, http://doi.org/10.1088/1361-6668/aa7afe.

Romanenko, A., and D. I. Schuster. “Understanding Quality Factor Degradation in Superconducting Niobium Cavities at Low Microwave Field Amplitudes.” Physical Review Letters, vol. 119, no. 26, Dec. 2017, p. 264801, http://doi.org/10.1103/PhysRevLett.119.264801.